#### (Solved): Given The Following Answer And Sensitivity Reports Cell \$E\$12 Objective Cell (Max) Name Profit Per B ...

Given the following answer and sensitivity reports Cell \$E\$12 Objective Cell (Max) Name profit per board Total Profit Original Value 0.00 Final Value \$3,100.00 Original Value Final Value Cell \$B\$9 \$C\$ 9 \$D\$9 Variable Cells Name boards X 3 boards Y boards 2 Integer Contin Contin Contin \$E\$15 SE\$16 \$E\$17 Constraints Name C elmacs time Lhs | Test stand time Lhs Graphic cards demand Lhs Cell Value Formula Status Slack 1033.333333SE\$15<=\$G\$15 Not Binding 2566666667 SE\$16<=\$G\$16 Binding 111110111 SE\$17> SG\$17 Not Binding 1191.666667 ISSO SCI 666667 Variable Cells Final Reduced Cost Objective Coefficient Value Allowable Increase 1 Cell \$B\$9 SC\$9 SD\$9 Name boards X boards Y boards Z Allowable | Decrease 1E+30 1E+30 258 3333333 Constraints | Cell Name \$E\$15 Celmacs time Lhs SE\$16 Test stand time Lhs ISES17 Graphic cards demand Lhs Final ShadowConstraint Value Price R.H. Side 1033.3333330 3 600 1550 2 1 550 1291.666667 0 100 Allowable Increase I E+30 3850 1191.666667 Allowable Decrease 2566.666667 1430 1E+30 and 2 . The optimal profit is (1,2,37) is working at full capacity. The unused capacity of the first constraint is dollars # we add 10 units capacity to constraint 2 at a cost of \$1.1 per unit, the amount of net benefit to the objective function is (Keep two decimal points if needed.